longevity escape velocity

The main part of this website is the book, “how to live forever“, and even as it was written, I kept changing my mind about what the “thrust” of the thing was – is it simply a list of diseases? Is there a central premise? Does a step-by-step instruction set even exist?

I believe that I have the premise now (and will need to rewrite parts of the book now…), which is based around “longevity escape velocity” (note to self: good chapter name)

In the past hundred years, life expectancy at birth has increased in parts of the world from about 64.75 years in 1928, to 89.5 years today. The “life expectancy at birth” is the age at which actuarial calculations predict that humans will die, based on current conditions and past performance.

64.75 to 89.5 is an increase of about 25 years in one century. 25 extra years that a person might live.

While that sounds like a lot (25 years is almost half again of 60 years), it’s not enough to guarantee immortality.

Even if we repeat the trick this century, and tack on an extra 25.25 years to the expected 89.5 years (that a person in Monaco might expect to live), we still have an expected age at death of only 114.75.

As I pointed out in that previous post, though, life expectancy predictions are usually pessimistic, because they rely on the technology of the time, and cannot predict accurately what the future will bring.

The biggest change that we have made in the last few years is one that has not yet filtered down to the world’s clinics – instead of treating old age as a simple winding down and inevitable end to the body, we are now beginning to treat it as a disease that can be treated and cured.

The full “cure” for old age is not likely to appear for a very long time, but that does not matter, as we can concentrate on the more accessible “longevity escape velocity” as a near-term goal.

So what does “longevity escape velocity” mean?

Let’s say that every year, we discover how to let the average person live an extra half year, the current average age of death is 80, and you are 40. How long do you think it will be before you die (on average)? When you are 80 the average age of death will be 100. When you’re 100, the average age of death will be 110. When 110, 115. When 115, 117.5. On average, people will still die by 120, despite the progress.

This is because half a year is /less than/ one year.

But let’s say we discovered how to add on 1.5 years to the average lifespan every year, the current average age of death is 80, and you are 40.

When you are 80, the average expected age of death will be 120. When you are 120, it will be 210. Instead of being almost guaranteed dead at 120, you are now middle-aged!

Even if we have not discovered a total and final cure for old age, if you are 120 and have an extra 90 years to live /at that moment/, you are almost certain to find yet another way to push back that final curtain further, even if it’s not forever.

We are already discovering how to do these things.

The current accepted biological limit to human life is 126 years, because of something called the “Hayflick” limit, which is caused by telomeres shortening on DNA every time it replicates itself. But we have already found ways to lengthen this. Elizabeth Parrish, CEO of BioViva, became the first person to extend telomeres, extending her own by 9%, which equates to between 14 and 20 years extra, bringing her potential lifespan up to 140+ years.

It might even be possible to repeat the same treatment, so she has potentially worked around the Hayflick limit permanently.

This gives us all an extra few years of life to work on whatever the next issue is.

Aging is caused by a lot of different things happening to the cells of the body. Telomere shortening is just one.

Another is that your mitochondria lose the ability to absorb oxygen and convert it to energy as the years go on. By fixing this, we gain another few years. David Sinclair’s research with NAD+ addresses this issue.

Then there are senescent cells – cells which have reached their “end of life”, and yet stick around, taking up space that would be better used by younger cells, and giving out inflammation proteins. We can now selectively kill these cells with FOXO4-DRI and UBX0101 drugs.

All of these are treatments that add on multiple years to your life. And these have all been announced only in the last five years.

It might not be possible to predict the future accurately, but I’m fairly sure it will be a long one!

Leave a Reply