Scurvy in the 21st century

Scurvy is a disease that we might have thought was gone long ago, since we all know that vitamin C cures scurvy, and we all know where to get vitamin C easily.

The cure for scurvy (fruits, and oranges in particular) has been discovered and rediscovered for thousands of years since at least 1500BCE, when scurvy was described in the Ebers papyrus in Egypt.

The actual vitamin C was not discovered until 1932, but it was proven in 1794 that lemon juice can prevent scurvy, when Commander Peter Rainier left on a voyage to India that took 23 weeks, in which not one person contracted scurvy. Another similar voyage only 50 years before that, led by George Anson, resulted in the loss of 1300 of 2000 crew mostly from scurvy.

To find that this disease is still visible today despite the cure being so readily available is surprising, and yet it is here.

An article in the Cornwall Alive newspaper describes increasing cases of scurvy, gout, and rickets among the population caused by the ease with which takeaway foods, which generally are not nutritionally good, can be bought.

Scurvy symptoms include fatigue, pain in the limbs, reddish-blue spots on the skin.

It doesn’t take a lot to avoid these problems. Just eat your fruits and vegetables, and go out into that sunlight every now and then.

selective destruction of SnCs in cartilage

Senescent cells (SnCs) have a role to play in the healing of wounds, but they tend to stick around afterwards, causing eventually more harm than they relieve.

A team of scientists led by Chaekyu Kim of the John Hopkins University School of Medicine used a senolytic drug, UBX0101, to clear out SnCs accumulating in the cartilage of mice that were recovering from cuts to the anterior cruciate ligaments (ACL – ligaments that cross over each other in an X shape behind the knees).

They chose this area to study because it has been noted that ACL injuries have a tendency to accumulate SnCs after injury, causing post-trauma osteoarthritis.

After the cuts, UBX0101 was injected into some mice.

The mice that received the injections did not suffer from osteoarthritis after healing from the cuts, and were able to regenerate cartilage lost during the injury.

Unity Biotechnology, who created UBX0101, received $116,000,000 in a round of investment last year, from investors such as Jeff Bezos, May Clinic Ventures, Venrock, and ARCH Venture Partners.

While this particular study was focused on osteoarthritis, SnCs can accumulate in all tissues in the body, so senolytic drugs (which trigger apoptosis in those cells to clear them) out can have a large range of uses.

workshop progress

I’m still working away at the foundations of the thing. Building things takes longer than I thought – especially if you’re doing it completely by hand, and only have an hour or two in the evenings!

I had some ideas on further things I want to dive into with the lab/workshop/shed once built.

One main reason for the entire project is so that I can work on projects that I simply can’t do within the house, such as working on electronics, etc. I can’t work in the house comfortably if I only have an hour or two each evening, only have a small area to work in (most of which is taken up already by my laptop), and I have to clear up whenever someone needs to use the table. By having a dedicated workshop, I can have a few projects going at the same time, and simply walk away after each session, knowing that I can pick up exactly where I left off the next day, without needing to go search for my bits and pieces.

The projects I already had in mind:
1. 3D printer to replace the old one that finally fell apart. first job: print a second new printer.
2. protein synthesis. far future plan. there are details online on how to automate protein synthesis.
3. vertical garden. I have a large plan for this, but basically, I want to be able to grow food using containers that I can store underground, lighting with LEDs, and feeding with nutrient baths.
4. calorimeters and other tools to measure nutritional content of food and plants.
5. food dispenser that is designed to output meals with very specific nutritional values.
6. spectrophotometer. should be simple enough. This is so I can measure protein in the protein synthesis project, and soil nutrient content for the vertical garden project

The idea for project 5 came about because of the month I spent eating Jimmy Joy (Joylent). While the prepackaged meal seemed like a perfect idea before I started, it soon became clear that it was designed for a person that is much more active than me, and I could not eat a reduced amount of it and yet keep 100% nutrition – so I designed and build a program that can use common off-the-shelf ingredients to generate customised nutritionally-balanced meals.

Of course, I’d like to know for sure that the meals actually do end up with the values that I calculate, so project 4 is for that.

And I’d like to grow my own source ingredients for the dispenser, so project 3 lets me do that.

how to live forever book

As you are probably aware, this blog is basically a portal into my book, which is a science-based approach to not dying.

I originally created this blog based on the idea that if I talked about the various topics in the book, then while talking about the topics, I may come up with better ways to explain the thoughts, and also come across new discoveries based on those topics.

A side-effect I had hoped would come about from the blog, was that people finding the website through Google would teach me what keywords they were searching for, and so I could expand on those topics to become more expert in them.

Mostly, this has not worked, because the book is about things that millions of people talk about every day, and so people that are far more informed and verbose than I am are writing better blogs than me.

What I found, though, is that niche information, such as on the FOXO4 DRI peptide, or on SBSI calculators, is not written about a lot online, so it’s easy to be found for those keywords.

I would be happy if there was a lot of information available about those so I could expand further into the topics, but I seem to have exhausted it!

The SBSI calculation research does not appear to be going any further than the original paper, so there’s not much more that can be written about it (if I’m wrong, please tell me!)

As for the FOXO4 DRI, it is still too expensive for me to afford so I can’t write anything from personal experience, there is still no information about human clinical trials, and those people that are self-testing don’t appear to be writing about it much either.

But, I will keep plugging away!

There are books out there already called similar names such as “how to live forever”, etc, but they are usually fiction and/or religious. It’s hard to explain to Google that when people search for “live forever”, what they’re really looking for is a non-fiction how-to; not a feel-good story or book of moral diatribe.

Diarrhoeal diseases symptoms

Diarrhoea is a sign that your body thinks you’ve eaten something you shouldn’t have, and it wants to get rid of it as quickly as possible.

image: some strains of E-coli can cause gastroenteritis

The most obvious symptom is obviously the diarrhoea itself – a sudden outpouring of watery excrement (stool, poo, whatever you want to call it).

Technically, doctors will only call this diarrhoea if it happens on three separate occasions in one day. Otherwise, it’s just a minor upset.

Diarrhoea is not a single disease, so there is no single group of symptoms to look out for.

There are a number of diseases that have diarrhoea as a side-effect, including lactose intolerance, cholera, coeliac disease, irritable bowel syndrome. Most likely if you have one of those diseases, the diarrhoea is not a surprise.

Diarrhoea is usually caused by a gastrointestinal infection (stomach bug – gastroenteritis), which can be bacterial, viral, or even parasitic in nature.

If there is blood in the stool, the diarrhoea is classed as dysentery, and can take up to 10 days to clear. Go see a doctor as soon as you can.

Diarrhoea is sometimes accompanied by symptoms such as stomach ache, stomach cramps, fever, bloating (your intestinal bacteria are working overtime and putting out gases that expand your body) and sometimes nausea.

In extreme cases (I’ve experienced this one – not nice), you can have strong diarrhoea and vomiting at the same time. It can feel exhausting afterwards.

Because of the amount of fluids that are being expelled by the body during an episode, it is important that you replenish as often as possible.

A person with diarrhoea can lose as much as a litre of water every hour, but it’s not just water that you lose, but salt and zinc.

Top up your zinc intake with supplements while you are affected, and regularly drink a mixture of water, sugar and salt (also known as ORS – oral rehydration solution) to stay hydrated.

While diarrhoea mostly clears up quickly in developed countries, it is still a very dangerous killer in less-developed countries, killing half a million children under five every single year.

Diarrhoea can mostly be avoided by following some very simple instructions:
1. keep your environment clean
2. keep your hands clean (and the rest of you , while you’re at it), with soap
3. don’t touch things or people that are dirty
4. make sure your water is clean (boil it if necessary)

using carbon nanotubes for neural prostheses

Carbon nanotubes are amazing things – they are electrically conductive, thermally conductive, so dark that materials made from them are blacker than whatever you think black looks like, and they are so strong that we may one day make elevators out of them that reach right out into space.

image: carbon nanofibers being spun into yarn

There have been fears circulating that nanotubes are biologically dangerous.

Every new thing has provoked fear-mongering – GMO, vaccines, the telephone, cars, the loom, but the more high-tech a new technology is, the harder it is to dissuade people of those fears, because it’s hard to explain high-tech in a way that’s easy for those fearful people to understand.

In the case of carbon nanotubes, the main fear is that because they are fibrous in nature (like fibre-glass and asbestos), they’re dangerous to the skin and lungs as an irritant, but because they are also so thin that they can penetrate biological cells (which fibreglass and asbestos can’t do), there is an added fear that they can disrupt the cell functions.

A study by researchers led by Laura Bellerini showed that not only do carbon nanotubes not interfere with the function of cells, but that they may be perfect for creating neural interfaces; something we will need for when we are coming up with ways to either speak directly to the brain, read directly from the brain.

The study also showed that when neurons are embedded in carbon nanotubes, they mature more quickly and grow new synapses (connections with other neurons).

While the potential for this goes well into sci-fi (uploading the brain, for example), the near-term uses are still phenomenal.

An example use in the near-term is to help create a link between an artificial hippocampal prosthesis, and the surrounding brain tissue.

The hippocampus is the simplest part of the brain to understand – data comes in one end, and goes out the other. A team of researchers spent ten years slicing a hippocampus up into tiny slices and measuring the electrical pathways, before recreating it in software, with an array of input probes, and another array of output probes. When the probes were placed in a rat’s brain (after cutting out its hippocampus), it was found that the prosthesis allowed the rat to make new memories. Human trials are currently underway.

Probably the hardest part of replacing the hippocampus is the reconnection, where the existing defunct hippocampus is removed, and the new artificial one is connected. The artifical device doesn’t need to go into the brain itself, but there must be a connection made between the brain and the device. This is currently done with an array of needles, but there is a limit to how fine those needles can get.

With carbon nanotubes, there is no such limit – because they are so much thinner than the thinnest metal needles, it should be possible to simply slide an entire array of them into place and have the carbon nanotubes automatically interface with neurons.

Mass Spectrophotometer

It’s Sunday. I had planned on getting the next part of my shed done (laying the concrete and bricks for the foundation), but forgot that shops don’t open Sundays. Damn.

The next time I’ll be free to work on this will be Wednesday, so I’m stuck here with nothing much to do but imagine.

I was trying to figure out which tools I need to build first once the lab is completed.

The end goal is to produce my own medicines/drugs, so I will need to develop a protein synthesis machine. I said yesterday that I thought it would be possible to do with home-built equipment. After reading up on it further, I am certain of that now.

But, there is no point starting off with that, yet. Even if I built a machine which could build proteins (using “solid state protein synthesis” – very simplified explanation here), I would have no way of being sure that it worked.

So, I need to build a measurement device first that can identify proteins.

The most common method used in a lab is by using a mass spectrometer. Those are quite expensive, even if you build them yourself.


Mass spectrophotometers, though, are cheap to build. The idea is simple – dissolve your sample in a solution, shine light of various colours through the solution, and measure the strength of the light that gets through the sample by using a light-dependent resistor. Here’s a video showing one in action. The diffraction grate is rotated a little at a time to change the frequency of light being inspected, and the voltage change is shown on screen.

The diffraction grate, by the way, is made from a piece of CD or DVD! If you shine light onto a DVD and look at the reflection, the light is broken apart into its various colours. This happens because of quantum mechanics. I thought I understood the mechanism (as described in Brian Cox’s book “The Quantum Universe”), but Wikipedia’s description is confusing.

Even while I’m building the protein synthesis machine, this will still be useful – I can use it to analyse the content of my garden’s soil to figure out the best crops to grow in it 😉

So, I now have a small shopping list of things to buy to build this spectrophotometer.

In fact, I might already have all the ingredients! I think I’m missing a light dependent resistor, but might not be…

garden laboratory

I’ve decided to build a shed, in which I can develop a laboratory and the skills with which to do some biohacking of my own.

image: my shed, so far 😉

Drugs such as NMN and FOXO4-DRI are hugely expensive, and even by the time they become cheaper, there will newer drugs invented that have better effects. I can either always be on the tail end of this stuff, or start catching up on how to do it myself.

So, I need a laboratory. I’ve dug an 8ft by 16ft foundation, which I will lay with concrete and bricks tomorrow.

I’m doing my best to do a good job at this. It’s not going to be a shoddy shed that’s freezing in winter, has no power, and whistles when the wind blows.

It will be thermally insulated, powered, temperature and humidity controlled, and quiet. I’m really looking forward to seeing if I can get the idea out of my head and into real life.

So far, of course, the idea is just a hole in the ground.

Once built, the first thing that goes into it is a 3D printer, with which I can start building equipment. There are open source 3D designs available for lab equipment. example, example

In the short term, I want to be able to measure progress in my weight, blood pressure, lung function and other easy-to measure things. Eventually, I want to be able to synthesise proteins, measure exact nutritional values in foods, develop an automated food combiner that can produce properly calculated food mixtures.

I don’t think any of those are impossible to do at home. Even the protein synthesis should just take time, training, and probably a lot of careful building.

FOXO4 DRI prices (July 2017)

I’ve removed a few entries from the table of prices I was tracking, because they were not DRI peptides.

If you are buying in bulk, it would be cheaper to synthesise, as discovered by some people at Longecity, who were quoted about $231.15 per 30mg dose, as long as you’re willing to fork out nearly $8000 to buy a 1000mg shipment.

The off-the-shelf prices are coming down quickly, month by month, as you can see, with NovoPro being the first lab to provide 30mg for less than $2000 (down from more than twice the price only two months ago!)

Shop May June July
Bucky Labs 2460 2265
NovoPro 4060.2 2144.6 1756.8

Hopefully next month, there will be more labs providing FOXO4 DRI off-the-shelf.

It’s still very expensive, but I’m certain that as demand ramps up, the prices will drop.

If you are aware of any lab that sells FOXO4 D-Retro-Inverso(DRI) peptide please comment below so I can add them to the list

Is Quantum Immortality Real?

This is a difficult one to answer. It’s kind of like asking “is God real?” – there is no compelling evidence either way.


Quantum Immortality (QI) is the idea that if the Many Worlds Interpretation (MWI) of Quantum Mechanics is true, then every possible universe exists and is just as real as this one, including every universe where you survive cancer, you fall from a building and land in a passing truck carrying hay, your plane doesn’t crash, cures for aging are discovered before you get old (hmm- sounds like this one, right?).

Because the MWI is just an interpretation of the math of Quantum Mechanics, and gives exactly the same results as all other interpretations (such as the popular Copenhagen Interpretation), there is no way to prove that it is correct or incorrect.

It boils down to faith, in the end – which one are you more comfortable believing?
1. that a quantum mechanical wave calculation is performed every instant of time, and a random result is magically chosen to become reality; the whole thing to be repeated ad infinitum (Copenhagen Interpretation)
2. that the quantum mechanical wave equation represents all versions of reality that exist, and that we are merely one of the results.

In one of these, a magical step is taken which has never been explained, and our universe pops out as the only result. In the other, the wave equation is simply a description of all realities and our universe is no more special than any other.

In a way, the puzzle is like the old physics/philosophy question – “Why is there something rather than nothing?”

Given that “in the beginning there was nothing” (let’s agree), it does not make sense that suddenly there is one single universe, and that is all that there can be. Exactly 1. No more. No less.

Even having 1 as the number of possible universes is not sensible. How did we get from 0 to 1?

Physics shows that it is certainly possible for a universe to appear from nothing. In fact, the Heisenberg Uncertainty Principle demands that a universe exist, because an empty universe is one in which the velocities and positions of all particles (all zero of them) are known, and that is forbidden.

But there is nothing in physics that says “there can be only one reality”. The math always takes place against hypothetical states of the universe, and there really is no difference between a fully calculated hypothetical simulation of a real universe (this one, for example), and the actual “real” thing. Especially from the point of view of a person living within that universe.

My own opinion is this: Quantum Mechanics describes the universe exactly. There are no known differences between QM and “reality”, that I am aware. So the only question is which interpretation is correct. Well, I believe that the simpler of any two explanations is usually the correct one. Because MWI does not require any magical “quantum collapse” step in its equations, I believe it is simpler and therefore probably correct.

The next part of this is to decide whether that means that the immortality part is real. That part is philosophical in nature.

Are you the exact same person that you were yesterday? Did you even exist yesterday?

The only evidence that you existed yesterday is what your memory and your senses tell you. But, your senses can be fooled, and your memory can be fooled as well. How do you know that your memories of yesterday were not planted in you while you slept?

If you were to die today, and an exact clone of you were to be created and given your memories, that clone would think it was you, and so would everyone else that knows you.

When you save your state in a computer game, make a mistake, then reload that state to carry on, to the characters in the game, it’s as if the mistake never happened in the first place.

If you die in this universe, and survive in another, it’s as if you never died in the first place.

In fact, coming back to the beginning of the article, for all you know, in another universe only a few minutes ago, you died of a heart attack. But do you remember that here? Of course not.

The only memories you can possibly have are those of a person that has survived everything thrown at them. The thoughts of a dead you might as well not exist at all.

While there is no way to “prove” that quantum immortality is real, I think it’s much more comforting to assume it is, than to presume it is not.

You gain nothing by disbelieving, other than a sense of finality and doom. At least by believing, you can be a bit happier in your day and nicer to your fellow humans, because you’re going to be around them for a very long time.