using carbon nanotubes for neural prostheses

Carbon nanotubes are amazing things – they are electrically conductive, thermally conductive, so dark that materials made from them are blacker than whatever you think black looks like, and they are so strong that we may one day make elevators out of them that reach right out into space.

CSIRO_ScienceImage_1074_Carbon_nanotubes_being_spun_to_form_a_yarn
image: carbon nanofibers being spun into yarn

There have been fears circulating that nanotubes are biologically dangerous.

Every new thing has provoked fear-mongering – GMO, vaccines, the telephone, cars, the loom, but the more high-tech a new technology is, the harder it is to dissuade people of those fears, because it’s hard to explain high-tech in a way that’s easy for those fearful people to understand.

In the case of carbon nanotubes, the main fear is that because they are fibrous in nature (like fibre-glass and asbestos), they’re dangerous to the skin and lungs as an irritant, but because they are also so thin that they can penetrate biological cells (which fibreglass and asbestos can’t do), there is an added fear that they can disrupt the cell functions.

A study by researchers led by Laura Bellerini showed that not only do carbon nanotubes not interfere with the function of cells, but that they may be perfect for creating neural interfaces; something we will need for when we are coming up with ways to either speak directly to the brain, read directly from the brain.

The study also showed that when neurons are embedded in carbon nanotubes, they mature more quickly and grow new synapses (connections with other neurons).

While the potential for this goes well into sci-fi (uploading the brain, for example), the near-term uses are still phenomenal.

An example use in the near-term is to help create a link between an artificial hippocampal prosthesis, and the surrounding brain tissue.

The hippocampus is the simplest part of the brain to understand – data comes in one end, and goes out the other. A team of researchers spent ten years slicing a hippocampus up into tiny slices and measuring the electrical pathways, before recreating it in software, with an array of input probes, and another array of output probes. When the probes were placed in a rat’s brain (after cutting out its hippocampus), it was found that the prosthesis allowed the rat to make new memories. Human trials are currently underway.

Probably the hardest part of replacing the hippocampus is the reconnection, where the existing defunct hippocampus is removed, and the new artificial one is connected. The artifical device doesn’t need to go into the brain itself, but there must be a connection made between the brain and the device. This is currently done with an array of needles, but there is a limit to how fine those needles can get.

With carbon nanotubes, there is no such limit – because they are so much thinner than the thinnest metal needles, it should be possible to simply slide an entire array of them into place and have the carbon nanotubes automatically interface with neurons.

garden laboratory

I’ve decided to build a shed, in which I can develop a laboratory and the skills with which to do some biohacking of my own.

19787420_10213425529135525_7107876504064218547_o
image: my shed, so far 😉

Drugs such as NMN and FOXO4-DRI are hugely expensive, and even by the time they become cheaper, there will newer drugs invented that have better effects. I can either always be on the tail end of this stuff, or start catching up on how to do it myself.

So, I need a laboratory. I’ve dug an 8ft by 16ft foundation, which I will lay with concrete and bricks tomorrow.

I’m doing my best to do a good job at this. It’s not going to be a shoddy shed that’s freezing in winter, has no power, and whistles when the wind blows.

It will be thermally insulated, powered, temperature and humidity controlled, and quiet. I’m really looking forward to seeing if I can get the idea out of my head and into real life.

So far, of course, the idea is just a hole in the ground.

Once built, the first thing that goes into it is a 3D printer, with which I can start building equipment. There are open source 3D designs available for lab equipment. example, example

In the short term, I want to be able to measure progress in my weight, blood pressure, lung function and other easy-to measure things. Eventually, I want to be able to synthesise proteins, measure exact nutritional values in foods, develop an automated food combiner that can produce properly calculated food mixtures.

I don’t think any of those are impossible to do at home. Even the protein synthesis should just take time, training, and probably a lot of careful building.